Rock, Rattle and Slide

bifurcation theory for piecewise-smooth systems

Alan Champneys

Department of Engineering Mathematics, University of Bristol

Mario di Bernardo, Chris Budd, Piotr Kowalczyk

Arne Nordmark Harry Dankowicz, Gabor Licsko, Csaba Bazso . . .
Contents

1: Nonsmoothness and discontinuity-induced bifurcation
Contents

1: Nonsmoothness and discontinuity-induced bifurcation

2: Grazing bifurcation in impacting systems
 Ex. i. a rattling heating valve
Contents

1: Nonsmoothness and discontinuity-induced bifurcation

2: grazing bifurcation in impacting systems
 Ex. i. a rattling heating valve

3: grazing & corner bifurcation in PWS systems
 Ex. ii. extended model for stick-slip
Contents

1: Nonsmoothness and discontinuity-induced bifurcation

2: grazing bifurcation in impacting systems
 - Ex. i. a rattling heating valve

3: grazing & corner bifurcation in PWS systems
 - Ex. ii. extended model for stick-slip

4: sliding bifurcation in Filippov systems
 - Ex. iii. relay controller
Contents

1: Nonsmoothness and discontinuity-induced bifurcation
2: grazing bifurcation in impacting systems
 Ex. i. a rattling heating valve
3: grazing & corner bifurcation in PWS systems
 Ex. ii. extended model for stick-slip
4: sliding bifurcation in Filippov systems
 Ex. iii. relay controller
5: nonsmooth impact laws with friction
 Ex. iv. Painlevé paradox of falling rod
1: Nonsmoothness and discontinuity-induced bifurcation

2: grazing bifurcation in impacting systems
 Ex. i. a rattling heating valve

3: grazing & corner bifurcation in PWS systems
 Ex. ii. extended model for stick-slip

4: sliding bifurcation in Filippov systems
 Ex. iii. relay controller

5: nonsmooth impact laws with friction
 Ex. iv. Painlevé paradox of falling rod

6: Conclusion
smooth bifurcation theory

\[
\dot{x} = f(x, \mu), \quad x \in D \subset \mathbb{R}^n, \quad \mu \in \mathbb{R}^p, \quad f \text{ smooth}
\]

Generates semiflow \(\Phi_{\mu}(x, t) \) and phase portrait = set of all trajectories \(\{\Phi(x, \cdot), \forall x \in D\} \).
smooth bifurcation theory

\[\dot{x} = f(x, \mu), \quad x \in D \subset \mathbb{R}^n, \quad \mu \in \mathbb{R}^p, \quad f \text{ smooth} \]

Generates semiflow \(\Phi_\mu(x, t) \) and phase portrait = set of all trajectories \(\{ \Phi(x, \cdot), \forall x \in D \} \).

Two notions of bifurcation:
smooth bifurcation theory

\[\dot{x} = f(x, \mu), \quad x \in D \subset \mathbb{R}^n, \quad \mu \in \mathbb{R}^p, \quad f \text{ smooth} \]

Generates **semiflow** \(\Phi_\mu(x, t) \) and **phase portrait** = set of all trajectories \(\{ \Phi(x, \cdot), \forall x \in D \} \).

Two notions of bifurcation:

- **Analytic** Branch of invariant sets \(\Gamma(\mu) \). **Bifurcation** is a \(\mu \)-value where Implicit Function Theorem (IFT) fails.
 \(\Rightarrow \) **Branching** (Lyapunov-Schmidt reduction)
smooth bifurcation theory

\[
\dot{x} = f(x, \mu), \quad x \in D \subset \mathbb{R}^n, \quad \mu \in \mathbb{R}^p, \quad f \text{ smooth}
\]

Generates semiflow \(\Phi_\mu(x, t) \) and phase portrait = set of all trajectories \(\{ \Phi(x, \cdot), \forall x \in D \} \).

Two notions of bifurcation:

- **Analytic** Branch of invariant sets \(\Gamma(\mu) \). *Bifurcation* is a \(\mu \)-value where Implicit Function Theorem (IFT) fails.
 \(\Rightarrow \) **Branching** (Lyapunov-Schmidt reduction)

- **Topological** *Bifurcation* is a \(\mu \)-value where there is non-structurally stable phase portrait.
 \(\Rightarrow \) **local bifurcations** Hopf, fold, flip, torus, . . .
 \(\Rightarrow \) **global bifurcations** homoclinic, tangency, crisis . . .

Classification by co-dimension
smooth bifurcation theory

\[\dot{x} = f(x, \mu), \quad x \in D \subset \mathbb{R}^n, \quad \mu \in \mathbb{R}^p, \quad f \text{ smooth} \]

Generates semiflow \(\Phi_\mu(x, t) \) and

\text{phase portrait} = \text{set of all trajectories} \{ \Phi(x, \cdot), \forall x \in D \}.

Two notions of bifurcation:

- **Analytic** Branch of invariant sets \(\Gamma(\mu) \). \textit{Bifurcation} is a \(\mu \)-value where Implicit Function Theorem (IFT) fails.
 \(\Rightarrow \) Branching (Lyapunov-Schmidt reduction)

- **Topological** \textit{Bifurcation} is a \(\mu \)-value where there is non-structurally stable phase portrait.
 \(\Rightarrow \) local bifurcations Hopf, fold, flip, torus, . . .
 \(\Rightarrow \) global bifurcations homoclinic, tangency, crisis . . .

Classification by co-dimension

IFT & struct. stability need continuity & smoothness . . .
three types of nonsmoothness

- Impacting systems:
three types of nonsmoothness

Impacting systems:
three types of nonsmoothness

- Impacting systems:

- Piecewise smooth continuous systems:
three types of nonsmoothness

- Impacting systems:

- Piecewise smooth continuous systems:
three types of nonsmoothness

- Impacting systems:

- Piecewise smooth continuous systems:

- Filippov systems:
three types of nonsmoothness

- Impacting systems:

- Piecewise smooth continuous systems:

- Filippov systems:
a motivating example

Oscillations of a pressure relief valve. Licsko, C. & Hös

noise at $\sim 375\, \text{Hz}$ at a range of flow speeds
a simple (dimensionless) model

\begin{align*}
\dot{y}_1 &= y_2 \\
\dot{y}_2 &= -\kappa y_2 - (y_1 + \delta) + y_3 \\
\dot{y}_3 &= \beta (q - \sqrt{y_3 y_1})
\end{align*}

\(y_1 > 0 \) valve displacement; \(y_2 \) valve velocity, \(y_3 \) pressure

\(\beta \) valve spring stiffness; \(\delta \) valve pre-stress
\(q \), flow rate; \(\kappa \), fluid damping

at \(y_1 = 0 \) apply a Newtonian restitution law:

\[y_2(t_*) = -r y_2(t_*) \]

Low \(\kappa \) \(\Rightarrow \) limit cycles between 2 Hopf bifs \(q = q_{\min}, q_{\max} \).
brute force numerics

\[\kappa = 1.25, \beta = 20, \delta = 10 \text{ (representative of experiment)} \]

Chaotic rattling due to Grazing events at \(q \approx 7.54, 5.95 \)
more realistic PDE model

Bazso, C. & Hös

Similar results including chattering at low pressure
A piecewise smooth (PWS) system is set of ODEs

\[\dot{x} = F_i(x, \mu), \quad \text{if} \quad x \in S_i, \]
A piecewise smooth (PWS) system is set of ODEs

\[\dot{x} = F_i(x, \mu), \quad \text{if} \quad x \in S_i, \]

Discontinuity set \(\Sigma_{ij} := S_i \cap S_j \) is \(\mathbb{R}^{(n-1)} \)-dim manifold \(\subset \partial S_j \cup \partial S_i \). Each \(F_i \) smooth in \(S_i \) generates flow \(\Phi_i(x, t) \).
Formalisms for nonsmooth system

A piecewise smooth (PWS) system is set of ODEs

\[\dot{x} = F_i(x, \mu), \quad \text{if} \quad x \in S_i, \]

Discontinuity set \(\Sigma_{ij} \) is \(\mathbb{R}^{(n-1)} \)-dim manifold in \(\partial S_j \cup \partial S_i \). Each \(F_i \) smooth in \(S_i \) generates flow \(\Phi_i(x, t) \)

Degree of smoothness of \(x \in \Sigma_{ij} \) is order of 1st non-zero term in Taylor expansion of \(\Phi_i(x, t) - \Phi_j(x, t) \)
A piecewise smooth (PWS) system is set of ODEs

\[\dot{x} = F_i(x, \mu), \quad \text{if} \quad x \in S_i, \]

Discontinuity set \(\Sigma_{ij} := S_i \cap S_j \) is \(\mathbb{R}^{(n-1)} \)-dim manifold \(\subset \partial S_j \cup \partial S_i \). Each \(F_i \) smooth in \(S_i \) generates flow \(\Phi_i(x, t) \)

Degree of smoothness of \(x \in \Sigma_{ij} \) is order of 1st non-zero term in Taylor expansion of \(\Phi_i(x, t) - \Phi_j(x, t) \)
impacting systems: deg. 0 need reset map

\[x \mapsto R_{ij}(x, \mu), \quad \text{if} \quad x \in \Sigma_{ij} \]
impacting systems: deg. 0 need reset map

\[x \mapsto R_{ij}(x, \mu), \quad \text{if} \quad x \in \Sigma_{ij} \]

PWS continuous systems: deg. \(\geq 2 \)

i.e. \(F_i(x) = F_j(x) \) but \(\exists k \geq 1 \) s.t. \(\frac{d^k F_i}{dx^k} \neq \frac{d^k F_j}{dx^k} \)
- **impacting systems**: deg. 0 need reset map
 \[x \mapsto R_{ij}(x, \mu), \quad \text{if} \quad x \in \Sigma_{ij} \]

- **PWS continuous systems**: deg. \(\geq 2 \)
 i.e. \(F_i(x) = F_j(x) \) but \(\exists k \geq 1 \) s.t. \(\frac{d^k F_i}{dx^k} \neq \frac{d^k F_j}{dx^k} \)

- **Filippov systems** deg. 1. Have possibility of *sliding motion*. E.g. if \(\Sigma_{ij} := \{ H(x) = 0 \} \),
 \[(H_x F_1) \cdot (H_x F_2) < 0.\]
• impacting systems: deg. 0 need reset map

\[x \mapsto R_{ij}(x, \mu), \quad \text{if} \quad x \in \Sigma_{ij} \]

• PWS continuous systems: deg. \(\geq 2 \)

i.e. \(F_i(x) = F_j(x) \) but \(\exists k \geq 1 \) s.t.

\[\frac{d^k F_i}{dx^k} \neq \frac{d^k F_j}{dx^k} \]

• Filippov systems deg. 1. Have possibility of \emph{sliding motion}. E.g. if \(\Sigma_{ij} := \{ H(x) = 0 \} \),

\[(H_x F_1) \cdot (H_x F_2) < 0. \]
bifurcation

- All smooth bifurcations can occur in PWS systems (because Poincaré map is typically analytic!)
bifurcation

- All smooth bifurcations can occur in PWS systems (because Poincaré map is typically analytic!)
- Also discontinuity induced bifurcations (DIB) where invariant sets have non-structurally stable interaction with a Σ_{ij}.
bifurcation

- All smooth bifurcations can occur in PWS systems (because Poincaré map is typically analytic!)
- Also discontinuity induced bifurcations (DIB) where invariant sets have non-structurally stable interaction with a Σ_{ij}.
- Can lead to classical (topological) bifurcation or not
bifurcation

- All smooth bifurcations can occur in PWS systems (because Poincaré map is typically analytic!)
- Also discontinuity induced bifurcations (DIB) where invariant sets have non-structurally stable interaction with a Σ_{ij}.
- Can lead to classical (topological) bifurcation or not

idea topological DIB \iff PW structural stability
types of DIB

Boundary equilibrium bifurcations
types of DIB

- Boundary equilibrium bifurcations
- Grazing bifurcations of limit cycles
types of DIB

- Boundary equilibrium bifurcations
- Grazing bifurcations of limit cycles
- Sliding and sticking bifurcations
types of DIB

- Boundary equilibrium bifurcations
- Grazing bifurcations of limit cycles
- Sliding and sticking bifurcations
types of DIB

- Boundary equilibrium bifurcations
- Grazing bifurcations of limit cycles
- Sliding and sticking bifurcations
- Invariant tori bifurcations
types of DIB

- Boundary equilibrium bifurcations
- Grazing bifurcations of limit cycles
- Sliding and sticking bifurcations
- Invariant tori bifurcations
types of DIB

- Boundary equilibrium bifurcations
- Grazing bifurcations of limit cycles
- Sliding and sticking bifurcations
- Invariant tori bifurcations
- Possible global bifurcations
types of DIB

- Boundary equilibrium bifurcations
- Grazing bifurcations of limit cycles
- Sliding and sticking bifurcations
- Invariant tori bifurcations
- Possible global bifurcations
this talk: periodic orbit DIBs

Goal: Catalogue & unfold codim-1 possibilities. E.g. ‘grazing bifurcation’: [Nordmark]
this talk: periodic orbit DIBs

Goal: Catalogue & unfold codim-1 possibilities. E.g. ‘grazing bifurcation’: [Nordmark]

Derive map close to DIB as composition of smooth Poincaré map P_π and discontinuity mapping PDM

$$\Sigma : \{H(x) = 0\}$$
this talk: periodic orbit DIBs

Goal: Catalogue & unfold codim-1 possibilities.
E.g. ‘grazing bifurcation’: [Nordmark]

Derive map close to DIB as composition of smooth Poincaré map P_π and discontinuity mapping PDM

Use results on border collisions of maps to classify dynamics [Feigin] [Yorke, Banergee et al]
Goal: Catalogue & unfold codim-1 possibilities.
E.g. ‘grazing bifurcation’: [Nordmark]

- Derive map close to DIB as composition of smooth Poincaré map P_π and discontinuity mapping PDM

\[\Sigma : \{ H(x) = 0 \} \]

- Use results on border collisions of maps to classify dynamics [Feigin] [Yorke, Banerjee et al]

- Nb. piecewise linear (PWL) flow $\not\Rightarrow$ PWL map
2. Grazing bifurcation in impact systems

- Consider single impact surface \(\Sigma := \{ H(x) = 0 \} \) with impact law:

\[
x^+ = R(x^-) = x^- + W(x^-)H_x F(x^-)
\]

\(W \) is smooth function and \(H_x F(x^-) \) is ‘velocity’. e.g.

\[
W = -(1 + r)H_x \Rightarrow \text{Newton’s ‘restitution law’}
\]

- More complex impact laws are possible, e.g. impact with friction (see later)
discontinuity mapping (PDM)

- **PDM**: $x_1 \mapsto x_5$ maps Poincaré section
 \[\Pi = \{ H_x F(x) = 0 \} \]
 to itself

- Computes correction to trajectory as if Σ were absent
explicit form of PDM

cf. [Fredrickson & Nordmark]

\[x \mapsto \begin{cases}
 x & \text{if } H(x) \geq 0 \\
 x + \beta(x, y)y & \text{if } H(x) < 0
\end{cases} \]

where \[\beta = -\sqrt{2a} \left(W - \frac{(H_x F)_x W}{a} F \right) + O(y^2) , \]

where \(y = \sqrt{-H} \) and

\[a(x) = d^2 H / dt^2 = (H_x F)_x F = H_{xx} F F + H_x F_x F \]

\(\Rightarrow \) square root map
Proof is by Taylor expansion of flow in \((x, y)\) and IFT
Proof is by Taylor expansion of flow in (x, y) and IFT

Use PDM to correct non-grazing Poincaré map P_{π}:

$$P_N = P_{\pi} \circ P_{PDM}$$

$$P_N(x, \mu) = M_1 x + N \mu + O(x^2, \mu^2) \quad \text{if} \quad H(x) > 0$$

$$= M_2 x + N \mu + B \sqrt{|H(x)|} + O(x^2, \mu^2) \quad H(x) < 0$$
Proof is by Taylor expansion of flow in \((x, y)\) and IFT

Use PDM to correct non-grazing Poincaré map \(P_\pi\):

\[
P_N = P_\pi \circ P_{PDM}
\]

\[
P_N(x, \mu) = M_1 x + N \mu + \mathcal{O}(x^2, \mu^2) \quad \text{if} \quad H(x) > 0
\]

\[
= M_2 x + N \mu + B \sqrt{|H(x)|} + \mathcal{O}(x^2, \mu^2) \quad H(x) < 0
\]

Conditions on \(M_{1,2}, B, C\) for given periodic orbit to exist
Proof is by Taylor expansion of flow in \((x, y)\) and IFT

- Use PDM to correct non-grazing Poincaré map \(P_\pi\):

\[
P_N = P_\pi \circ P_{PDM}
\]

\[
P_N(x, \mu) = M_1 x + N \mu + \mathcal{O}(x^2, \mu^2) \quad \text{if} \quad H(x) > 0
\]

\[
= M_2 x + N \mu + B \sqrt{|H(x)|} + \mathcal{O}(x^2, \mu^2) \quad H(x) < 0
\]

- Conditions on \(M_{1,2}, B, C\) for given periodic orbit to exist

- Attractor for \(\mu > 0\) depends on linearisation of orbit for \(\mu < 0\).
Proof is by Taylor expansion of flow in \((x, y)\) and IFT

Use PDM to correct non-grazing Poincaré map \(P_\pi\):

\[P_N = P_\pi \circ P_{PDM} \]

\[P_N(x, \mu) = M_1 x + N \mu + \mathcal{O}(x^2, \mu^2) \quad \text{if} \quad H(x) > 0 \]

\[= M_2 x + N \mu + B \sqrt{|H(x)|} + \mathcal{O}(x^2, \mu^2) \quad \text{if} \quad H(x) < 0 \]

Conditions on \(M_{1,2}, B, C\) for given periodic orbit to exist

Attractor for \(\mu > 0\) depends on linearisation of orbit for \(\mu < 0\).

Simplest case:
\(\lambda_1\) real leading eigenvalue of \(M_1\) . . ., then dynamics is determined by 1D map:
dynamics of 1D map

\[f(x) = \sqrt{\mu - x} + \lambda_1 \mu \quad x < \mu, \quad f(x) = \lambda_1 x \quad x > \mu, \]

1. \(\frac{2}{3} < |\lambda_1| < 1 \): robust chaotic attractor size \(\sim \sqrt{\mu} \).

2. If \(\frac{1}{4} < |\lambda_1| < \frac{2}{3} \) alternating series of chaos and period-\(n \) orbits, \(n \to \infty \) as \(\mu \to 0 \).

3. \(0 < |\lambda_1| < \frac{1}{4} \): just period-adding cascade
return to Ex.i: valve rattle

Two grazing bifurcation events $q = 7.54$, $q = 5.95$

$q = 5.95$: $\lambda_1 < 0 \Rightarrow$ discontinuous jump in attractor
$q = 7.54$: $\lambda_1 = 0.8537 \Rightarrow$ jump to chaos. Iterate map
3. DIBs in PWS continuous systems

Simplest case: grazing bifurcation
Analyse using discontinuity mapping: PDM
general results for PDM

<table>
<thead>
<tr>
<th>degree</th>
<th>F</th>
<th>jump</th>
<th>Uniform Case</th>
<th>Non-uniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>δ-function</td>
<td>x</td>
<td>square-root</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>bounded</td>
<td>F</td>
<td></td>
<td>$O(1/2)$</td>
</tr>
<tr>
<td>2</td>
<td>C^0</td>
<td>F_x</td>
<td>$O(3/2)$</td>
<td>$O(3/2)$-type</td>
</tr>
<tr>
<td>3</td>
<td>C^1</td>
<td>F_{xx}</td>
<td>$O(5/2)$</td>
<td>$O(3/2)$-type</td>
</tr>
</tbody>
</table>

$F(x)$ continuous at $\Sigma \Rightarrow$ no immediate jump in attractor
1D map with $O(3/2)$ singularity

- Consider [Halse, di Bernardo et al]

$$x \mapsto \begin{cases}
\nu x - \mu & x \leq 0 \\
\nu x + \eta x^{3/2} - \mu & x > 0
\end{cases}$$

- $0 < \nu < 1 \Rightarrow$ simple fixed point. No bifurcation at $\mu = 0$.

- but with $\eta < 0$ get nearby fold at $\mu = -\frac{4(1-\nu)^3}{3\eta^2}$ (much closer than smooth fold if $\nu \approx 1$)
Also, get **period-adding cascades**. E.g. for $\gamma = 3/2$, $\eta = -1$. Then stable $L^{k-1}R$ orbits exist for

$$\frac{-8(\nu^k + 1)^3 - 12(1 - \nu^k)(1 + \nu^k)^2}{27\nu^2(k-1)(1 + \nu + \nu^2 + \ldots + \nu^{k-1})} < \mu < -\left(\frac{\nu^k - 1}{\nu^{k-1}(\nu - 1)}\right)^2.$$

case $\gamma = 2$:
Ex. ii: A realistic stick-slip oscillator

Dankowicz 1999

\[y_1 \text{ - horizontal displacement; } y_2 = \dot{y}_1 \]
\[y_3 \text{ - vertical displacement; } y_4 = \dot{y}_3 \]
\[y_5 \text{ - shear deformation of asperities} \]
\[\text{belt velocity } U = 1 \]
equations of motion

\[\begin{align*}
\dot{y}_1 &= y_2, \\
\dot{y}_2 &= -1 + \left[1 - \gamma U |1 - y_4| y_2 + \beta U^2 (1 - y_4)^2 \sqrt{K(y_1)} \right] e^{y_1 - d}, \\
\dot{y}_3 &= y_4, \\
\dot{y}_4 &= -s y_3 + \frac{\sqrt{g \sigma}}{U} e^{-d} \left[\mu (y_5 e^{-y_1} - 1) + \alpha U^2 S(y_1, y_4) \right], \\
\dot{y}_5 &= \frac{1}{\tau} \left[(1 - y_4) - |1 - y_4| y_5 \right],
\end{align*} \]

where \(K(y_1) = 1 - \frac{y_1 - d}{\Delta} \),
\(S(y_1, y_4) = (1 - y_4) |1 - y_4| K(y_1) e^{-y_1} - 1 + \frac{d}{\Delta} \).

\(\Rightarrow \) PWS continuous across discontinuity boundary \(y_4 = 1 \).
grazing bifurcation analysis

Dankowicz & Nordmark 2000
3 successive zooms of bifurcation diagram:
grazing bifurcation analysis

Dankowicz & Nordmark 2000
Simulation (left) and iteration of DM (right)

in local map co-ordinates $\sim y_4 \times 10^{-4}$
4. Sliding DIBs in Filippov systems

Kowalczyk, Nordmark, diBernardo
Four possible DIB involving collision of limit cycle with sliding boundary $\partial \hat{\Sigma}^-$; see Mike Jeffrey’s talk

(a) crossing sliding
(b) grazing sliding
(c) switching sliding
(d) adding sliding
Unfold with discontinuity mapping Di Bernardo, Kowalczyk, Nordmark

<table>
<thead>
<tr>
<th>Bifurcation type</th>
<th>DM leading-order term</th>
<th>Map singularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>crossing sliding</td>
<td>$\varepsilon^2 + O(\varepsilon^3)$</td>
<td>2</td>
</tr>
<tr>
<td>grazing sliding</td>
<td>$\varepsilon + O(\varepsilon^{3/2})$</td>
<td>1</td>
</tr>
<tr>
<td>switching sliding</td>
<td>$\varepsilon^3 + O(\varepsilon^4)$</td>
<td>3</td>
</tr>
<tr>
<td>adding sliding</td>
<td>$\varepsilon^2 + O(\varepsilon^{5/2})$</td>
<td>2</td>
</tr>
</tbody>
</table>

- Maps are non-invertible on one side
- Only grazing sliding \Rightarrow jump in attractor
Ex.iv: a relay control system

\[\dot{x} = Ax - B\text{sgn}(y), \quad y = C^T x, \]

\[
A = \begin{pmatrix}
-a_1 & 1 & 0 \\
-a_2 & 0 & 1 \\
-a_3 & 0 & 0
\end{pmatrix}, \quad B = \begin{pmatrix}
b_1 \\
b_2 \\
b_3
\end{pmatrix}, \quad C^T = \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}^T.
\]

Complex dynamics:

\[b = (1, -2, 1)^T, \quad a_{31} = -5, \quad a_{21} = -99.3, \quad \text{and} \]

(a) \(a_{11} = 1.206, 1.35, \) periodic; (b) nearby, chaotic
bifurcation diagram

A grazing-sliding cascade
5. Impact with friction

Dankowicz Nordmark & C.

- $q \in \mathbb{R}^n$, with rigid contact in 2D + Coulomb friction

$$M(q, t) \ddot{q} = f(q, \dot{q}, t) + \lambda_T c_u^T(q, t) + \lambda_N c_v^T(q, t),$$

- Scalar constraint $y \geq 0$, $y \in \mathbb{R}$ normal distance;
 $\lambda_N \geq 0$, $\lambda_T \in \mathbb{R}$ normal and tangential forces;

- Coulomb friction, $|\lambda_T| \leq \mu \lambda_N$, $\lambda_T = -\text{sign}(u)\mu \lambda_N$ if $u \neq 0$

- e.g. rod & table Painlevé 1905, Brogliato et al.
contact dynamics

- Project Lagrangian onto u and v directions:

$$\dot{u} = a(q, \dot{q}, t) + \lambda_T A(q, t) + \lambda_N B(q, t),$$

$$\dot{v} = b(q, \dot{q}, t) + \lambda_T B(q, t) + \lambda_N C(q, t),$$

$$A = c_u \cdot M^{-1} \cdot c_u^T, \quad B = c_u \cdot M^{-1} \cdot c_v^T, \quad C = c_v \cdot M^{-1} \cdot c_v^T,$$

- positive definite $M \Rightarrow A > 0 \quad C > 0, \quad AC - B^2 > 0$

- special case $B = 0 \Rightarrow \text{“independent” normal and tangential motion} \Rightarrow \text{can use Newtonian restitution}$

$$v \rightarrow -rv \text{ at impact (well posed)}$$

- what if $B \neq 0$?, e.g. for rod example ($l = 2, m = 2$):

$$A = 1 + 3 \sin^2 \theta, \quad B = 3 \sin 2\theta, \quad C = 1 + 3 \cos^2 \theta$$
modes of sustained motion

free flight: $y > 0$. No contact forces:

$$(\lambda_T, \lambda_N) = (0, 0).$$

positive/negative slip: $y = 0$, $v = 0$, $\lambda_N > 0$, $u \neq 0$. Full friction \(\lambda_T = -\text{sign}(u) \mu \lambda_N. \)

$$(\lambda_T, \lambda_N) = \frac{b}{C - \text{sign}(u) \mu B} (\text{sign}(u) \mu, -1).$$

stick: $y = 0$, $v = 0$, $\lambda_N > 0$, $u = 0$, $|\lambda_T| < \mu \lambda_N.$

$$(\lambda_T, \lambda_N) = \frac{1}{AC - B^2} (bB - aC, aB - bA).$$
impacts

- **Def:** impact phase infinitesimal time intervals in which λ_N and λ_T are impulses (distributions)

- **key idea:** re-scale $\tau = t/\varepsilon$, $\Lambda_{N,T} = \varepsilon\lambda_{N,T} = O(1)$ and let $\varepsilon \rightarrow 0$.

- impact-phase dynamics: $q' = 0$ and

\[
\begin{align*}
u' &= A\Lambda_T + B\Lambda_N, \\
v' &= B\Lambda_T + C\Lambda_N
\end{align*}
\]

$(A, B, C$ are constant during impact since $q' = 0$.

- integrating $I_{N,T} = \int_\text{impact} \Lambda_{N,T} d\tau$ gives:

\[
(I_T, I_N) = \frac{1}{AC - B^2} (C\Delta u - B\Delta v, A\Delta v - B\Delta u).
\]

Change in \dot{q} is then: $\Delta \dot{q} = M^{-1}(c_u^T I_T + c_v^T I_N)$
but how to compute $\Delta u, \Delta v$?

\[u' = A\Lambda_T + B\Lambda_N, \quad v' = B\Lambda_T + C\Lambda_N, \]

\Rightarrow 3 modes of impulsive motion:

impulsive positive slip: $u > 0$. Full friction $\lambda_T = -\mu\lambda_N$.

impulsive negative slip: $u < 0$. Full friction $\lambda_T = \mu\lambda_N$.

impulsive stick: $u = 0$, $|\lambda_T| < \mu\lambda_N$. Only possible if $|B| < \mu A$.

\Rightarrow For all modes: $u' = k_u \lambda_N$, $v' = k_v \lambda_N$ where

\[
(k_u, k_v) = (k_u^+, k_v^+) = (B - \mu A, C - \mu B) \quad \text{for pos. slip}
\]

\[
(k_u, k_v) = (k_u^-, k_v^-) = (B + \mu A, C + \mu B) \quad \text{for neg. slip}
\]

\[
(k_u, k_v) = (k_u^0, k_v^0) = (0, \frac{AC - B^2}{A}) \quad \text{for stick}
\]
when is the impact finished?

3 possibilities:

1. **Newtonian coefficient of restitution**
 Relate post-impact velocities to pre-impact:
 \[v_1 = -rv_0 \]

2. **Poisson coefficient of restitution (Glocker)**
 Relate normal impulses during compression and restitution:
 \[I_r = -rI_c \]

3. **Energetic coefficient of restitution (Stronge)**
 Relate normal-force work during compression and restitution:
 \[W_r = -r^2W_c \]

If impact phase has a single mode \(\Rightarrow \) all 3 agree.
But (Stewart) 1 & 2 may **increase** kinetic energy for \(r < 1 \).
Hence we use 3 & derive explicit formulae (cf. Stronge)
impulsive motion follows straight lines

\[k_{u}^{+} < 0 \]
\[k_{v}^{+} > 0 \]
\[k_{u}^{-} > 0 \]
\[k_{v}^{-} > 0 \]
discontinuity-induced bifurcation

- dynamics cross region boundary as parameters vary
- \(\Rightarrow \) hybrid flow map can be \(C^1 \) (no bifurcation) or \(C^0 \) (jump in multipliers)
- e.g. loss of period-one impacting periodic orbit

rod example with Van-der-pol type forcing:

\[
S_x = -k_1(x - u_{dr}t) - c_1(u - u_{dr}) \\
S_y = -k_2(y - y_0) - c_2(y - y_0)^2 - y_1^2)R = -k_3(\theta - \theta_0) - c_3\theta
\]
ambiguities during sustained motion

To to simulate as a hybrid system, need to resolve:

A. Painlevé paradox for slip If \(y = 0, v = 0, b > 0 \) and \(C - \mu B < 0, u > 0 \) (or \(C + \mu B < 0, u < 0 \)), then motion could continue with
- Sustained free flight
- Sustained positive (negative) slip
- An impact with zero initial normal velocity

B. Painlevé paradox for stick If \(y = 0, v = 0, u = 0, b > 0, \)
\[|bB - aC| < \mu(aB - bA) \] and \(C - \mu B < 0 \) (or \(C + \mu B < 0 \)), then motion could continue with
- Sustained free flight
- Sustained stick
show consistency via smoothing

- Introduce constitutive relation $\lambda_N(y, v)$ that is “stiff”, “restoring”, and “dissipative”.

- Case A slip (WLOG positive slip),

\[
\begin{align*}
\dot{y} &= v, \\
\dot{v} &= b + (C - \mu B)\lambda_N(y, v).
\end{align*}
\]

$b > 0$, $C - \mu B < 0 \Rightarrow$ large negative stiffness,
\Rightarrow slipping will never occur, must immediately lift off ($y > 0$) or take impact ($y < 0$)

- Case B stick $\dot{v} = \frac{(bA - aB) + (AC - B^2)\lambda_N(y, v)}{A}$

\Rightarrow always large positive “stiffness” hence vertical motion is asymptotically stable ($even if b > 0$)
ambiguities at mode transitions

Sustained motion is consistent BUT what about transitions

- **Case a.** approach to the Painlevé boundary \((C - \mu B = 0) \) during (positive) slip.

 previous analysis shows: can’t actually reach \(C - \mu B = 0 \), so what happens instead?

- **Case b.** transitions into stick or chatter

 Def: chattering (also known as zeno-ness) is accumulation of impacts. No contradiction if accumulate in forwards time. But can get reverse chatter.
a. unfolding $C - \mu B \rightarrow 0$ while slipping

cf. Genôt & Brogliato

- **Re-scale time** $t = (C - \mu B)s \Rightarrow$

$$\frac{d}{ds} \begin{pmatrix} C - \mu B \\ b \end{pmatrix} = \begin{pmatrix} \alpha_1 & 0 \\ \alpha_2 & \alpha_3 \end{pmatrix} \begin{pmatrix} C - \mu B \\ b \end{pmatrix}$$

- **Eigenvector** $(0, 1)^T \Rightarrow$ trajectory tend to $C - \mu B = 0$, only if $b = 0$
approaching the singular point
what happens after singular point?

- could lift off, or take a (zero-velocity) impact.
- e.g. simulate example for stiff, compliant contact force

\[\lambda_N(y, v) = \frac{(1 + r^2) - (1 - r^2) \tanh \left(\frac{v}{\delta} \right)}{2} \left(-\frac{y}{\varepsilon} \right) \]

for small \(\delta, \varepsilon \)

- resolvable (ongoing work) \(\Rightarrow (?) \) impact always occurs
b. transition into stick or chatter

e.g. nearby initial conditions with \(b < 0 \)

\[v \rightarrow ev \] after impact + lift off.
analysis of chatter

Find parameter regions in which $e > 1$ (reverse chatter) despite $r < 1$ - even in the “non-Painlevé” case
analysis of chatter

- Find parameter regions in which $e > 1$ (reverse chatter) despite $r < 1$ - even in the “non-Painlevé” case
- then we would have “infinite” non-uniqueness in forwards time -:(

analysis of chatter

- Find parameter regions in which $e > 1$ (reverse chatter) despite $r < 1$ - even in the “non-Painlevé” case
- then we would have “infinite” non-uniqueness in forwards time -:(
- but can such transitions occur?
Find parameter regions in which $e > 1$ (reverse chatter) despite $r < 1$ - even in the “non-Painlevé” case
then we would have “infinite” non-uniqueness in forwards time -:(
but can such transitions occur?
analysis of smoothed “stiff” systems suggest yes . . .
analysis of chatter

Find parameter regions in which $e > 1$ (reverse chatter) despite $r < 1$ - even in the “non-Painlevé” case
then we would have “infinite” non-uniqueness in forwards time -:(
but can such transitions occur?
analysis of smoothed “stiff” systems suggest yes . . .
it depends how you take the smoothing -:(

analysis of chatter

- Find parameter regions in which \(e > 1 \) (reverse chatter) despite \(r < 1 \) - even in the “non-Painlevé” case
- then we would have “infinite” non-uniqueness in forwards time -:(
- but can such transitions occur?
- analysis of smoothed “stiff” systems suggest yes . . .
- it depends how you take the smoothing -:(
- ongoing work . . .
6. Conclusion

- used piecewise-smooth as formalism.
6. Conclusion

- used piecewise-smooth as formalism.
- ⇒ degree of smoothness case by case
6. Conclusion

- used \textit{piecewise-smooth} as formalism.
- \Rightarrow \textit{degree of smoothness} case by case
- \Rightarrow \textit{discontinuity induced bifurcation} classification with DMs \Rightarrow sudden jumps to chaos, etc.
6. Conclusion

- used piecewise-smooth as formalism.
- \Rightarrow degree of smoothness case by case
- \Rightarrow discontinuity induced bifurcation classification with DMs \Rightarrow sudden jumps to chaos, etc.
- provides natural explanation of observed behaviour
6. Conclusion

- used piecewise-smooth as formalism.
- ⇒ degree of smoothness case by case
- ⇒ discontinuity induced bifurcation classification with DMs ⇒ sudden jumps to chaos, etc.
- provides natural explanation of observed behaviour
- much on-going work, e.g.
 - impact + friction Dankowitz, Nordmark & C.
 - catastrophic sliding bifurcations ∼ canards Jeffrey, C. di Bernardo, Shaw, Moehlis
6. Conclusion

- used piecewise-smooth as formalism.
- ⇒ degree of smoothness case by case
- ⇒ discontinuity induced bifurcation
 classification with DMs ⇒ sudden jumps to chaos, etc.
- provides natural explanation of observed behaviour
- much on-going work, e.g.
 - impact + friction Dankowitz, Nordmark & C.
 - catastrophic sliding bifurcations ∼ canards Jeffrey,
 C. di Bernardo, Shaw, Moehlis

Piecewise-Smooth Dynamical Systems: Theory & Applications diBernardo, Budd, C. & Kowalczyk
Springer Jan 08
... + SIAM review Dec 08
6. Conclusion

- used piecewise-smooth as formalism.
- ⇒ degree of smoothness case by case
- ⇒ discontinuity induced bifurcation
classification with DMs ⇒ sudden jumps to chaos, etc.
- provides natural explanation of observed behaviour
- much on-going work, e.g.
 - impact + friction Dankowitz, Nordmark & C.
 - catastrophic sliding bifurcations ~ canards Jeffrey, C. di Bernardo, Shaw, Moehlis

Piecewise-Smooth Dynamical Systems: Theory & Applications diBernardo, Budd, C. & Kowalczyk
Springer Jan 08

... + SIAM review Dec 08
6. Conclusion

- used piecewise-smooth as formalism.
- ⇒ degree of smoothness case by case
- ⇒ discontinuity induced bifurcation classification with DMs ⇒ sudden jumps to chaos, etc.
- provides natural explanation of observed behaviour
- much on-going work, e.g.
 - impact + friction Dankowitz, Nordmark & C.
 - catastrophic sliding bifurcations ~ canards Jeffrey, C. di Bernardo, Shaw, Moehlis

- *Piecewise-Smooth Dynamical Systems: Theory & Applications* diBernardo, Budd, C. & Kowalczyk Springer Jan 08

 . . . + SIAM review Dec 08